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Characterization of diffusive motion in anisotropic 
liquid systems 

W A B Evans, J G Powles and A Dornford-Smith 
Physics Laboratory, University of Kent, Canterbury, Kent CT2 7NR, UK 

Received 1 August 1990 

Abstract. The translational motion of a t o m  in a liquid confined between two plane parallel 
repulsive walls isstudied bymmputer simulation. It isshown that the motion perpendicular 
to the wallscannot be described in astrict sense by themnventional diffusionequationeven 
if the diffusion constant is generalized to a space dependent diffusion tensor. Instead, for 
the anisotropic case. a system of linear coupled rate equations is proposed, whose time- 
independent rate transition matrix is shown to be necessarily spatially asymmetric, with the 
equilibriummean staticdensity as itszeroeigenvalue eigenvector. Thisaccuratelydescribes 
the transverse atomic motion for timesconsiderably larger than the velocity autocorrelation 
time without the need to empirically input the mean static density. This theory is tested by 
computer simulation and found within statistical error to be a valid quasi-microscopic 
description of the (slower) stochastic atomic motion. The evolution of the anisotropic self- 
diffusion propagators towards the quasi-periodic mean density profile is studied in detail as 
a function of the initial starting position. 

1. Introduction and theoretical development 

Macroscopic diffusive motion is well known to be irreversible and, in bulk isotropic 
fluids, is well described over macroscopically long time scales by the usual diffusion 
equation 

gi = div(DVp) 

where D is the diffusion constant which, in the bulk, is indeed a constant. For shorter 
time scales on the other hand the above equation clearly cannot be satisfactory since, 
being irreversible, its solutions decay monotonically towards a static situation and it 
thereby fails completely to give any description of the ongoing fluctuational motion that 
exists in every macroscopic system, be it in equilibrium or otherwise. 

For liquids in anisotropic situations e.g. near walls, surfaces or within confined 
geometries (i.e. inside pores) etc, it is well known that the equilibrium mean density 
profile within the liquid is not uniform; for example, in the cavity between two parallel 
walls (which will concern us later) the mean of the equilibrated density, pm, sometimes 
referred to as the 'static' density, is known to be non-uniform and displays marked peaks 
and troughs, as shown by many computer simulations (see, for example, Nicholson and 
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Parsonage, 1982). If we suppose thex axis to be normal to the walls, then the diffusion 
‘constant’(tensor) andp,canonlydependonx,so that (1.1) forthissituation becomes 

W A E Evans ef a1 

(J/Jx) (o , (x )  JP,/W = 0 

ap,/ax = constant/D,(x). 

which means that 

Hence theconstarit must bezero,else thenormal principalcomponentofthe diffusion 
tensor would need to  be infinitely large at each peak and trough of the mean density 
profile. In turn, a zero value for the constant implies the mean density must be uniform 
everywhere-which we know not to be the case in the anisotropic situations we are 
considering. 

More generally, the equilibrium mean density profile would need to obey 
div(DVp,) = 0, implying that DVp, must be of the form curl(u(r)) where, to avoid 
parity violation, u(r) must be some definable position-dependent axial vector within the 
fluid. For normal fluids, at least, such a non-zero local vector would appear incon- 
ceivable, so forcing the conclusion that DCp, = 0 and hence Vp, = 0, which is incon- 
sistent with the observation that pm is non-constant. We thus conclude that the normal 
diffusion equation is inadequate to describe the mean density or the diffusive motion in 
any situation where the mean density is non-uniform. even with a space-dependent 
tensor diffusion constant, D(r). 

A common procedure adopted to treat diffusion in anisotropic systems is to apply 
the diffusion equation (usually with a tensor point function diffusionconstant e.g. Groot 
er al, 1987) to the deviation of the density from the mean static density i s .  6p(r, r )  = 
p(r. I )  - p(r). In our opinion this is a ‘patch’ on the (symmetric) diffusion equation 
that forces p(r,m) to be the static mean density, p(r), which (as we show later) is 
fundamentally erroneous in anisotropic systems as it violates classical time reversal 
symmetry. Further it requires the ‘empirical’ input of (the measured) p(r) which, in our 
opinion, should be a by product of a more complete approach. Here our philosophy is 
to avoid this step. As argued above, this forces us to abandon the diffusion equation too 
and consider instead its generalization-namely a rate equation. (In the isotropic case 
there is no difference as it is well known that a rate equation applied to isotropic systems 
in the quasistatic limit gives the diffusion equation.) 

The fact that the diffusion equation is not valid for transverse atomic motion when 
the density is not uniform is probably not widely realized-literature on these topics 
abounds with references. directly or implicitly, to transverse and parallel diffusion 
constants, D, and D, etc. One can also find statements such as ‘D, is zero’ in these 
contexts, Of course, such statements are meaningful in that these ‘diffusion constants’ 
are to be interpreted in an operational sense in terms of the mean square displacement 
in particular directions divided by the elapsed time. These can have well-defined values 
even in anisotropic media defining in some sense ‘effective’ diffusion constants in 
particular directions-even when a diffusion equation with an associated diffusion 
‘constant’ tensor point function is, strictly, invalid. In this operational sense, ‘D, = 0’ 
simply implies that the transverse motion (and hence the mean square transverse dis- 
olacement) is ‘bounded’ e.g. by w a l l ~ s  in the system we will consider in section 
3 .  Nevertheless, here we venture the opinion that authors should, in the interest of 
minimizing ambiguity, avoid the use of these kinds of statements whenever a diffusion 
equation is not a valid description of the motion (i.e. in anisotropic systems). Rather, 
to state operationally what is meant is simpler, less ambiguous and more correct. 
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We will not be particularly concerned with the diffusion parallel to the walls in this 
paper since this raises no conceptual difficulty. 

The question of how to characterize irreversibility in confined geometries remains, 
and this paper is mainly concerned with how to characterize diffusive behaviour in these 
situations. We propose a generalized description of diffusive motion in terms of a rate 
equation-which is more fundamental than the diffusion equation (1.1): as the latter 
may be derived from the former in the quasistatic limit and when the system is isotropic. 
Then, by comparison with data obtained from the computer simulation of diffusive 
motion in fluids, we proceed to investigate precisely under what conditions such rate 
equationsapply. Todo thisweanalyse the behaviour ofthe self-diffusionpropagator i.e. 
the Green’s function of molecular motion, gs(rL, r;, r ) ,  which describes the equilibrium 
probability(density) that a molecule(oratom) inpositionriat timerbe found in position 
r;attimet + ri.e. t la ter .  Foragivenr this,ingeneral,isareal,non-symmetricmatrix. 
In isotropic systems, this function is translationally invariant and reduces to the well- 
known ‘self part of the Van Hove (1954) space-time correlation function, G,( Ir, - r,], z) 
(or G,(rjj, z)) (see, for example. Egelstaff. 1967). Hence the matrixg,(r,, r,. z) is simply 
a generalization of GS(r,;, t )  to confined geometries or to translationally non-invariant 
systems in general. Classicallyg,(r,, r;, z) may be defined as 

gs( r , , r ; ,  I) = @(r, - rLT))a(r; - rJO)))/@(r; - r,(O))) (1.2) 
where S(r - r,(t)) represents the density of a particular (the sth) particle at point r and 
at time t .  Classically, time reversal invariance (see, for example, Hansen and McDonald, 
chapter 7) requires 

(a@, - rs(c))a(r, - r,(o))) = W; - rs(T))a(r; - r,(o))) 

which, in turn, implies the ‘detailed balance’ condition 

g , ( c ,  r,. .)(a(r; - r,(O))) = g h , .  Ti, r)@(r, - r,(o))) (1.3a) 

or as 

CS(ri - r,(O))) = p(r j ) /N (1.36) 

Thus, in an anisotropic system, as a consequence of time-reversal symmetry, the self- 
diffusion propagator must be asymmetric. The probability density, &(.,, r;, r )  obeys 

g h ,  r;, t)p(r,) = g&,, T i ,  r)p(rO. 

dr, g&,. r, ,  7) = 1 (1.4) 

which follows from (1.2) and simply expresses conservation of probability and implies 
that tbematrix,g,(r,, r,, t ) ,  hasaunityeigenvalueforanyr value. Further, by integrating 
(1.36) over r, and utilizing (1.4), it follows that 

(1.5) 

i.e. p(r)istheeigenvectorbelongingtothisunityeigenvalue (aswasexpectedintuitively) 
and is now seen to be a direct consequence of time reversal invariance. This Green’s 
function describes how any initial density distribution of particles, p(r,, t ) ,  in the equi- 
librium system evolves according to 



1640 

Here we investigate whether the evolution is describable by a rate equation propagator 
form. Imagining space to be subdivided into an infinite number of volume domains, dV; 
centred on r,, then. if a rate equation applies, we have 

a 
-[p(r,,r)&y;] = 2 dlr,R(r,,r,)d"l;p(r,,t) -dV2p(r t , r )  2 R(r,,ri)d"?', (1.7) at 

where R(r;, r,) dT; represents a time-independent transition probability that a particle 
in domain dV, will diffuse to domain dV, in unit time. It is convenient to define the 
diagonal element, R(r,, r,) ,  by 
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I ( # , )  i(+i) 

R(r , , r , )dV;= - 2 R(r,,ri)dVi 
i (# i j  

so that we may write compactly 

3 
- p ( r j , f )  ar = zR(r , , r , )p( r , , f )dY,  = dr,R(rt.r,)p(r,,f) (1.8) , I 

where the transition matrix. R(r,, r,) is such that dr, R(r;, r,) = 0, i.e. the sum of all 
elements in each of its columns vanishes. implying that R(r,, r,) possesses a zero eigen- 
value. Furthermore. all off-diagonal elements represent transition probabilities and 
hence are positive and real. The formal solution of (1.8) is 

p ( r ; , t +  T) = fd r jexp(Rr ) ( r , , r , )p ( r , . r )  (1.9) 

where exp(Rr](r,, r,) standsfor the (i. j)thelementof the exponentiatedmatrix. Rr. On 
comparison with (1.6), we see that, if a rate equation applies, the propagator,g,(ri, r,, r ) ,  
has the representation 

gs(rr,q, r )  = exp[Rrl(r,+r,). (1.10) 

We pause to remark here that the aforementioned approach to anisotropicdiffusion, 
namely to apply the diffusion equation (usually with a tensor point function diffusion 
constant) to the deuiuriorz of the density from the static mean density i.e. 6p(r,t) = 
p(r ,  r )  - p(r ) ,  is not consistent with (1.10). For, if a stochastic rate equation for the 
evolution of the probability density of a single particle is meaningful under some 
conditions, (e.g. in the quasistatic limit) then a rate matrix, R is meaningful under the 
same conditions-whence i t  is essentially related to g3(r,% r,, t) by (1.10). In anisotropic 
systems, we have seen that classical time reversal invariance (or the 'detailed balance' 
equation (1.3)) requires gs(r,, r,, r )  to be asymmetric-in which case it  follows directly 
from (1.10) that R must be asymmetric too. This is an alternative (and equivalent) 
argument to the one given earlier for the need for an asymmetric rate matrix in systems 
with non-uniform mean static density. The rate equation (1.8) is: however, linear in 
p(r, t )  and the static density, p(r), being the zero eigenvalue eigenvector of R, evidently 
obeys 

dr, R(r; ,  r,)D(r,) = 0 
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Subtracting this from (1.8) implies that 6p(r , l )  must obey (1.8) too. As alluded to 
earlier, this is at variance with the approach in which a symmetric rate equation (which, 
in the long-wavelength limit, amounts to a diffusion equation with a space-dependent 
diffusion constant, DJr) )  is applied to Sp(r, l)(= p(r ,  I )  - p(r)) .  Thus it appears irre- 
futable that, in the limit of a rate equation applying exactly, an exact description of the 
evolution of 6p(r ,  I )  also requires the same anisotropic rate matrix. Additionally, the 
approach utilizing an anisotropic rate equation obviates the need to empirically input 
p(r) ,  as the latter is implied by the form of the rate matrix. 

Thus, considerable insight into the precise conditions under which a rate equation is 
applicable would result from checking to what extent the matrix R turns out to  be 
independent of r. R can be deduced, via (l.lO), from the self-diffusion propagator, 
gs(ri, r,, t ) .  which may be obtained by a molecular dynamics simulation of a system 
within confined geometry. As we have already remarked, we cannot expect a rate 
equation to apply over short time intervals due to the ongoing thermal fluctuations. Thus 
the analysis must proceed with caution and, as one of its conclusions, should indicate 
the time scale over which a rate equation applies reasonably accurately. The results 
reported here tackle this problem essentially by diagonalizing the matrix g5(ri, r,, 5 )  for 
several values o f t .  In the general case this matrix, though real, is not symmetric so that 
its eigenvalues must in general be expected to be either real or  in complex conjugate 
pairs, though they must all be of modulus s 1, as the 1-norm of the matrix is unity (see 
Wilkinson, 1965). This follows when we bear in mind that all elements of gs(ri, r,, r ) ,  
being probabilities, are positive semidefinite, so implying that the sum of the moduli of 
all elements in any column is the same as the sum of all elements in that column-which 
we know, from (1.4), to be unity for all columns. To find these eigenvalues and their 
associated eigenvectors we have employed the QR-algorithm for non-symmetric 
matrices (see Wilkinson 1965 or Wilkinson and Reinsch 1971). For translationally 
invariant or isotropic systems g,(r,, r,, r )  is symmetric, which leads to a considerable 
simplification as discussed in section 2 below. Our more general results for non-isotropic 
systems will be discussed in section 3. 

2. The isotropic case 

By the term 'the isotropic case' we mean the conventional bulk liquid and the absence 
of external body forces. In this case, the general equations derived above simplify 
considerably. As a consequence of translational invariance, 

The matrix, &(r,, r,, t ) ,  is now trivially symmetric as well as real, and accordingly 
possesses real eigenvalues and must be diagonalizable by an orthogonal transformation. 
The eigenequation of Gs(rii, t ) ,  that is, 

is trivial, for by Fourier transformation (which is a unitary transformation), (2.2) 
becomes 

G J k ,  .)up = A ( " ) u p  (2.3) 



1642 

thus showing that the eigenvalues are (?>(k, r )  = J d r  G8(r, T) e'*", for any value of (an 
even distribution of) k. Note here, that Gs(r, T) is not a periodic function of r (= Irl) 
even though we may be carryingout a simulation in aperiodic box with the usual Born- 
Von Karman boundary conditions. This is because we follow each particle as it diffuses 
from one periodic box to the next and r is the total distance travelled. The eigenvectors 
(in k space) are, trivially, v p )  = bk.kn, k, being any member of a uniform distribution 
of k vcctors that one might think of as 'allowed' by the boundary conditions pertaining 
to a box of side length L, that may be as large as one likes. Thus the 'distribution' of 
eigenvalue magnitudes will be given by the Fourier transform, c , (k ,  T), weighted with 
a uniform 'density of k levels', (L&x)', which is virtually infinite as L, may be con- 
sidered as large as one chooses-the diffusive motion not being spatially restricted. This 
merely reflects the unbounded number of domains accessible to the isotropic motion, 
so implying the self-diffusion propagator is an infinite-dimensional matrix. For the 
nomial diffusion equation (1.1) it is easy to show, from the well known Gaussian form 
of the Green's function of the diffusion equation, that the eigenvalues are distributed 
according to A(") = exp(- TO#). Clearly, in this case, the eigenvalues of R,  A$), would 
be -Dkz and are T independent and negative semidefinite. 

To test the actual situation, we have simulated a conventional Lennard-Jones 12-6 
liquid with cyclic boundary conditions in a cubic box of periodic length, L = 11.280 
containing 1020 particles corresponding to a density of 0.710-~. The temperature was 
1 .404kB and the total run time was in excess of 2000 'Verlet' units of (m0'/4&)~'*. Note 
the ' W i n  this definition of the time unit-some readers may be used to time units where 
thisfactorisomitted. Ofcourse. €and uarethefamiliarenergyandlengthconstants that 
appear in the 12-6 Lennard-Jones potential. It is sufficient to evaluate the propagator, 
G,(x. r ) ,  for motion in the x direction only. We have evaluated the eigenvalue distri- 
bution, At). of R viz. 
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Theresultsforvariousrvaluesaresummarizedinthecurvesshowninfigure 1, which 
comprise nine plots of -A$) corresponding to reduced values of r of 8,16,24,32,40,  
48 ,56 ,72  and 80, respectively. The Fourier transforms were performed by non-linear 
leastsquaresfittingoftheG,(n, r)datatoa fitfunctionofaGaussian x polynomial form 
(which has an analytic Fourier transform) and subject to one (holonomic) constraint: 
that the fit function must always integrate to unity. 

Note that all eigenvalues (apart from the zero eigenvalue) are negative and, of 
course, real. The key feature to note is that those that decay most slowly, i.e. those 
A!$'' corresponding to k. values of modulus less than about 2.2u", are to a good 
approximation, independent of T, whereas those of larger modulus do appear to depend 
on 5. This is. of course, sufficient to justify the validity of a rate equation, but only 
over time scales considerably longer than that corresponding to the largest eigenvalue 
magnitude that appears to be z independent. As may be deduced from figure 1 this is 
about 0.09 units which implies times greater than about 0.09-1 - 10 'Verlet' time units. 
For shorter times the 5 dependence of the eigenvalues reflects the thermal fluctuations. 
We suggest that if the construction of an effective R matrix that omits the effects of 
fluctuations for the purposes of deducing a rate equation is desired, then one can simply 
keeponly thecontributionsdue to thesmall negativeeigenvaluesin the range -0.09- 0 
that are virtually T independent as discussed above in reconstructing the self-diffusion 
propagator according to the inverse of (2.4). Of course, having done this, the inverse 
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transform reconstructs R(x). Note that the ensuing rate equation should be far more 
effective (i.e. work over muchshorter timeintervals) than the normal diffusion equation 
(1.1) whose ‘proof‘ is only valid asymptotically in the quasistatic limit. The long time 
behaviour is unaltered by this procedure, being affected only by the eigenvalues of the 
smallest modulus i.e. those close to k = 0. It is straightforward to show, for example, 
that (x’)/r = - (R”(k)),,,in thelongtime (r+ m) limit, which,for thenormaldiffusion 
equation, would have the value 20. 

3. The anisotropic case: confined geometries 

We now generalize the treatment described in section 2 to the anisotropic case. Still of 
paramount interest is to test the range of validity of equation (1.8) but, of course, we 
must not now expect gs(r,, r,, r )  or, equivalently, R(r,, r,) to be symmetric matrices. This 
asymmetry arises because it may be easier for a particle to diffuse from r, to r, in time t 
than vice-versa. This can be attributed to various effects: a primary effect such as ‘wall 
forces’ if one of these domains is close to a boundary, and also secondary effects like a 
prevailig density gradient. Of course, we have termed the latter secondary since they 
would not exist in the bulk i.e. far from walls. It is perhaps worth emphasizing that an 
anisotropic density can persist much further into the fluid from the wall than the wall 
forces themselves-an extreme case being ‘hard’ repulsive wall potentials. Accordingly, 
as the R matrix should describe diffusive motion in the ‘equilibrated’ system, we must 
expect the latter to be asymmetric over similar distances to those for which the mean 
density is anisotropic. 

As a preliminary investigation we have simulated a Lennard-Jones Euid in equi- 
librium Nlthin a slab confined between two repulsive soft walls (we used a repulsive wall 
potential that varied inversely as the ninth power of the perpendicular distance from the 
wall) i.e. V,&, - xwaIl) = 4&u9/Ix, - x,1119. For the y and z directions we employed 
periodic boundary conditions as in normal (bulk) simulations. We had two parallel walls 
at x = 0 and x = 1% and there were 1020 particles in the. simulation. The periodicity 
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w/o + 
Figure 2. The anisotropic density profile. 

distances in they  and z directions were equal at about 10.270. After the system had 
equilibriated, it displayed the density profile shown in figure 2 between the walls and a 
temperature of 1.30e/kB. The total simulation time was in excess of 15000 Verlet units 
of (48c/m0~)-'1~. We see that the mean density has fluctuations close to the walls and 
tails off to a fairly constant (bulk) value of about 0.720-~ in the middle region. 

We looked. in particular. at the one-dimensional motion along the x direction i.e. 
perpendicular to the walls. The x domain ranged up to 15oand we divided this into sixty 
subdomains, each of equal width 0.250, During the simulation we kept a record of the 
x positions of all particles, and so we could evaluate the matrix of probabilities, Pi,(r), 
that a particle in the equilibratedsystem, which isinitially indomainjshall be in domain 
i at a later time, r .  In the limit, when the domain size is so small that it can be labelled 
by its x position co-ordinate, it is clear that P,.Jr) (after division by the destination 
domain volumewidth, dx,) asymptotes to the self-diffusion Green'sfunction,g,(x,, xi,  r ) .  
In figure 3, g,(x,, xi, r )  is plotted for five values of starting position x,: 1.1250, 3.6250, 
7.6250, 11.3750and 13.875~. and, for each of these, gs(x,, xi, r )  isplottedfor four values 
ofr:8,32,56and80i.e.20curvesinall. Ofcourse,atr = O,g,(x,xj, 0) = 6(x -$,),and 
the plots broaden monotonically with increasing r so that the curves in figure 3 are easily 
identified. Note that, by symmetry, the twoouter setsof curvesshould bemirror images 
of each other. and the fact that we find this to be accurarely so testifies to the very small 
statistical errors in our results. Note also how, for the larger r values, the broadened 
g,(x,x,, r)'s develop auxiliary peaks at positions corresponding to peaks in the mean 
density as shown in figure 2. For r+ ", gX(x,xi, r )  must tend to p, (x) ,  the particles by 
then having lost all recollection of their initial starting position, xi. 

To test the validity of the rate equation, (1.8), we investigate whether R, as derived 
from P by solving (1.10). does turn out to have time-independent real and positive 
off-diagonal elements representing transition probabilities with corresponding time- 
independent eigenvalues with negative real parts. If a rate equation was an exacf 
description of the motion, this would imply that any initial density distribution would 
evolve monotonically to a 'static' mean profile, p,(x), predicted by the zero eigenvalue 
eigenvector of R (which of course is the same as the unity eigenvalue eigenvector of P), 
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x/a * 
Figure 3.20 plots of the self-diffusion propagator, g,(x, x,. r )  for each of five values of %Lo: 
1.125,3.6?5.7.625.11.315 and 13.878. Four curvesale plottedfor rvaluesof 8.24,86and 
80 

We know from (1.5) that the mean density, p(x), must indeed be the eigenvector 
pertaining to the unity eigenvalue of P. After the system has relaxed to this mean density 
we know the situation will hardly be ‘static’ for, even in equilibrium, there are ongoing 
fluctuations in the density and virtually all other properties, so the evolution cannot be 
monotonic towards any ‘ked‘  static state. This being so, it follows directly, as is well 
realised, that no stochastic equation can be exact. These considerations effectively 
suggest a minimum Limit on the time period over which a rate equation may be expected 
to be valid. At shorter times we expect fluctuations to invalidate (1.1) and we expect this 
to manifest itself in terms of the larger eigenvalues of R ( T )  (corresponding to quickly 
changing density components) to be r-dependent and somewhat random. However the 
longer lived density components that correspond to the eigenvalues of R with small real 
parts should all turn out negative and r independent if a rate equation is to be a 
meaningful description over longer periods. To check this, we diagonalized our 60 x 60 
matrix, Picj(r), using the QR algorithm for non-symmetric matrices, for a similar range 
of T values as in the above-described isotropic case. Now, of course, as our matrix is 
asymmetric, the eigenvalues will not, in general, be real. However, all elements of 
PiCj(r) willbe real andpositive, beingprobabilities, andconservationof particlesimplies 
that ZiP i+! (~ )  must be unity for all column labels, j .  Thus, as argued previously for 
&,xi,  r )  In section 1, the 1-norm of this matrix, P,+(z), is also one, implying that all 
its eigenvalues must be of modulus less than or equal to unity. Furthermore, there is (at 
least) one eigenvalue which is unity, as, from the aforementioned points, all rows of 
PiCj(s) - add to zero if A = 1, and so are then linearly dependent, thus indicating 
the unity eigenvalue. Translated to the rate matrix, R, defined in terms of P;+(r) by 

Pi.+(r) = [exp(Rr)l j j  (3.1) 

implies that all eigenvalues of R must have a real part which is negative semidefinite, 
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one eigenvalue, of course, being exactly zero. It is precisely the negative real part of 
these eigenvalues which determines bow long i t  takes for their component contributions 
to the self-diffusion propagators to decay, the ones with smallest modulus dominating 
the long-term diffusion probability. Thus we appreciate the analogy with the isotropic 
case discussed earlier. Provided it turns out that these long-lived eigenvalues are t 
independent, there will be asatisfactory description of the anisotropic diffusion in terms 
of a rate equation and, furthermore. we can construct the relevant rate matrix if we 
know the eigenvectors associated with these eigenvalues. 

Figure 4 shews the results of our analysis and displays the real part of all the 60 
eigenvaluesof R for t valuesof 8,16.24,32,40,48,56,64,72 and 80. Clearly the largest 
negative eigenvalues most definitely depend on t, generally diminishingas r increases. 
However, the t dependence of the small (i.e. least negative) eigenvalues is different. 

Figure 5 shows an enlargement of that part of figure 4 just below the real axis, i.e. 
depicting only those eigenvalues that lie in the range -0.4+'0. We see clearly that the 
longest lived (i.e. smallest) eigenvalues are independent of t to an excellent approxi- 
mation so justifying, to high accuracy, a rate equation description of our simulated 
system. Note that, as in the isotropic case, the most rapidly decaying eigenvalues do 
appearto be t dependent,indicatingthat arate equation description cannot bevalid over 
these shortest times that are commensurate with the decay times of these t dependent 
components. Note that the distribution of eigenvalues here appears in good qualitative 
agreement with the corresponding eigenvalue distribution for the isotropic case. Here 
the 'stochastic' eigenvalues (i.e. those that appear to be time independent) extend over 
a range of values from 0 down to magnitudes of about -0.125 reciprocal Verlet time 
units. The corresponding range in the isotropic simulation described in section 2 is 0 
down to about -0.09. Consequently, we would expect a rate equation to be applicable 
for time intervals greater than about 8 Verlet units, (m$/48&)'fi, or rates slower than 
about 0.12 reciprocal Verlet units. This result is of the same order as the corresponding 
time (-10 Verlet units) estimated for the isotropic case in section 2 and we should 
perhaps reiterate that in both simulations the temperatures were similar, and the density 
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Figure 5. The t dependence of the ‘longest lived‘ eigenvalues of R 

in the isotropic simulation was virtually equal to that in the uniform region midway 
between the walls of our anisotropic system. 

From figures 1 and 5 it  appears possible to separate the ‘stochastic’ from the ‘non- 
stochastic’ motion according to which range of eigenvalue distribution of the R matrix 
appears to be r independent (which we will call the ‘stochastic’ eigenvalues). It is clear 
that the ‘stochastic’ eigenvalues are those with the least negative real part i.e. the longest 
lived. This suggests a reconstruction of the R matrix that governs ‘stochastic’ motion by 
means of the Dirac representation (generalized to non-symmetric matrices). By matrix 
diagonalization, which is optimal via the QR algorithm, one deduces the similarity 
transformation, S, that diagonalizes P (and simultaneously R) according to 
S’PS = PdiaP. The Dirac representation 

R = ~ I , l u , ) ( C , I  ( 3 4  
n 

expresses R in terms of the complete set of eigenvalues, I , ,  the corresponding eigen- 
vectors, lu,,), and the adjoint eigenvectors, (C,,l (which are simply the rows of S I ) ,  In 
the reconstruction, we propose to include accurately the ‘stochastic’ eigenvalues but 
redefine the other (non-stochastic) ones to all have a negative infinite real part. This is 
tantamount to ignoring the contributions due to these in the reconstruction of the self- 
diffusion propagator 

ex@) = exp(L,OIu,Mnl (3.3) 

which might reasonably be expected to give an accurate account of motions for all rates 
for which the stochastic concept appears applicable. In the isotropic situation for 
example, this description, whilst in agreement with the relevant diffusion equation in 
the quasistatic (long-wavelength) limit, would be expected to be significantly better at 
accounting for the faster-but-sti[l;stochnstic motion. We intend to investigate this in 
future work. 

For shorter intervals, the non-decaying dynamical process i.e. the thermal fluc- 
tuations, invalidate a rate equation description. If the latter was valid then every com- 
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ponent except the zero-eigenvalue component would decay monotonically to zero, in 
whichcase the mean observed density (shown in figure 2) would (apart from an arbitrary 
sign (phase factor)) correspond tothe eigenvector correspondingto thezero eigenvalue. 
As we have seen (equation (lS)), classical time-reversal invariance does require the 
unity eigenvalue eigenvectorofg,(r,. ri, t )  (equivalent to the zero-eigenvalue eigenvector 
of R) to be proportional to the mean static density, p(r).  The current simulation results, 
however, didnotshow thisdefinitively. Comparing theanalysesofdistinct but equivalent 
simulation runs we found that, whereas the 'stochastic' eigenvalues proved very repro- 
ducible, the corresponding eigenvectors, even allowing for their arbitrary phase factors, 
could not be claimed to be similarly reproducible. In particular the zero-eigenvalue 
eigenvector was not, in general, monotonic in sign-which, by definition, p(r) certainly 
must be. Thus it would appear that to get consistent eigenvectors from our various 
simulation runs requires a much higher order of statistical accuracy than for obtaining 
consistent eigenvalues. Furthermore, more systematic investigations of these obser- 
vations would appear desirable. Though unlikely, it is also conceivable that ill-con- 
ditioning in the (NAG Library) QR algorithm for the real asymmetric matrices that we 
used might account for the apparent non-reproducibility of the eigenvectors. 

W A  B Evans et a1 

Acknowledgments 

We are grateful to the SERC computational science initiative for providing us with 
formidable computational power in the form of aT-800 transputer array with which the 
simulations described here were carried out. We have also benefitted from discussions 
with Professor G Rickayzen and other members of the UKC physics laboratory. We are 
indebted to a referee who directed our  attention to classical time-reversal invariance 
symmetry that enabled an elegant proof of (1.3). 

References 

Egelstaff P 1967 An Introduction to fhe Liquid Store (London: Academic) 
Groot R D. Faber N M and van der Eerden J P 1987 Mol. P h y .  62 861 
Hansen J-P and McDonald 1 R 1976 Theory of Simple Liquids (London: Academic) 
Nicholson D and Parsonage N G 1982 Compiifer Simrtlafion and fhe Statistical Mechanics of Absorption 

Van Hove L 1954 Phys. Rev. 95 249 
Wilkinson J H 1965 The Algcbroic Eigenualue Problem (Oxford: Oxford University Press) 
Wilkinson J H and Reinsch C 1971 Linear Algebra (Handbook for  Aulomafic Compumtion 2) (Berlin, 

(London: Academic) 

Heidelberg: Springer) 


